
Extracting Collocations from Syntactically Annotated
Corpora

Oliver Sander, Ingrid Fischer
Lehrstuhl f̈ur Informatik 2, Universiẗat Erlangen–N̈urnberg, Martenstr. 3, 91058 Erlangen
osander@gmx.de, idfische@informatik.uni-erlangen.de
Harald Kirsch
LION bioscience, Waldhofer Str. 98, 69123 Heidelberg
kirschh@lionbioscience.com

Abstract. In this paper the extraction of collocations from biomedical text sources is described. The extraction of
uninterrupted collocation candidates is introduced and for interrupted candidates a new technique using suffix tries is
developed. It reduces computational complexity, compared to previous approaches to this task. Extraction is further
extended to annotated biomedical corpora, which enables the discovery of patterns with mixed attributes like base
forms combined with syntactical categories. Finally, different common approaches for evaluating candidates are
explained, and their applicability to interrupted and mixed attribute candidates is discussed.

Keywords. Intelligent data analysis, collocations, syntactically annotated corpora

1 Introduction

In the BioPath project1 methods and tools are devel-
oped for information extraction from biomedical sci-
entific texts. The approach used allows fast approxi-
mate (shallow) syntactical parsing — or rather detec-
tion — of phrases expressing interesting facts about
biologically interesting entities. Parsing is based on
patterns which capture phrases commonly used to ex-
press facts like protein interactions, protein functions
or mutations of genes or proteins. Many phrase pat-
terns are necessary to cover the variability of natural
language. Identifying the patterns manually turned out
to be a major bottleneck.

Taking into account the fact that the finite state au-
tomata used for parsing are good at handling a huge
number of patterns, two goals of different expected
complexity were set:

1. Develop a method able to extract phrases or pat-
terns of frequently used word combinations, so
called collocations, from a set of documents.

2. Extend the methods to be able to derivein-
terrupted collocations, i.e. frequently used se-

1BmBF project 0312385, a cooperation between LION bio-
science, Heidelberg, Centrum für Informations- und Sprachverar-
beitung (CIS) der Ludwig-Maximilians Universität München and
the NLP group of the University of Salford (Uk)

quences of words interrupted by arbitrary words
or phrases.

There are many existing definitions for the termcollo-
cations. According to a very general, but useful one,
a collocation is ”a conventional way of saying things”
[MS99]. This turns out to be a very ”friendly” defini-
tion, as it does not include specific restrictions. ”Con-
ventional way” can be interpreted differently, so that
any phrase that occurs in a text often enough could be
considered as a ”conventional way”. Even if this is a
bit vague, it matches quite well with our idea of fre-
quently used phrases. Various other definitions can be
found in [FA96], [MS99], [Ben89]. Examples of col-
locations are:

light verbs: to make a decision, to do a favor

terminological expressions: laparoscopic cholecys-
tectomy, endoscopic sphincterotomy

frozen expressions and idioms:to pull somebody’s
leg, to kick the bucket

Collocations are constructed from so calledtokens. In
normal text, every word is considered a token and a
collocation is a sequence of fixed words (aka n-grams
or factors) like:

the presence of
be used to

be associate with
on the basis of
the aim of this study is to

We also hope to find what we callmixed attribute col-
locationslike

wasadv shown to

wereadv represents an adverb, e.g.recentlyor gen-
erally.

An interrupted collocationis a set of tokens with an
ordering, that occurs within a window of a given size.
Opposed to uninterrupted collocations, which are only
able to model fixed phrases, interrupted collocations
also support token combinations which occur at a dis-
tance, with one or more gaps in between. The ordering
of tokens is important. For example [CH89]keep from
is a verb-preposition collocation, that typically occurs
with a gap between its components:

keepyoufrom coming into contact
keepthe doctorfrom interfering
keepthe research projectfrom being investigated

The dataset used is a subset of MEDLINE2 abstracts.
MEDLINE is a bibliographic database with roughly
11 million abstracts ranging from biomedicine over
medicine, nursing to dentistry. The English abstracts
were augmented with additional information gener-
ated by a statistical Hidden Markov Model tagger. For
each word in its surface form (as it appears in the orig-
inal text) additionally the base form, syntactical cate-
gory and morphology are stored. For this work 200
MB are available, but for most experiments a subset
of 20 MB (approximately 300 000 words, 13 000 sen-
tences) is used. This annotated corpus has the follow-
ing form:

〈tok〉〈sur〉There〈/sur〉〈lem cat=”adv” mor=”:b”〉there〈/lem〉〈/tok〉
〈tok〉〈sur〉have〈/sur〉〈lem cat=”v” mor=”:I”〉have〈/lem〉〈/tok〉
〈tok〉〈sur〉been〈/sur〉〈lem cat=”v” mor=”:P”〉be〈/lem〉〈/tok〉
〈tok〉〈sur〉several〈/sur〉〈lem cat=”det” mor=””〉several〈/lem〉〈/tok〉
〈tok〉〈sur〉reports〈/sur〉〈lem cat=”n” mor=”:m”〉report〈/lem〉〈/tok〉
. . .

In this notation the surface form (〈sur〉...〈/sur〉), its
base form or lemma (〈lem〉 ... 〈/lem〉) are stored within
the tag〈tok〉...〈/tok〉 . Additionally as attributes of the
lem-tag, the category and morphological information
is stored. For our project we only used the base form
and the syntactic category of the words following prior
experience of LION. The internal corpus representa-
tion has the following form:

[(’adv’,’there’), (’v’,’have’), (’v’,’be’), (’det’,’several’),(’n’,’report), ...]

for the sentence startthere have been several re-
ports....

2available online from PubMed at
http://www.ncbi.nlm.nih.gov/entrez

a

13

14

15

16

15

16

17

a

c

b

a

b
18

34

35

36

37

38

bc

b

a

a

b

a

b

b

a

a

b

a

a

b

1

3

4

5

6

7

8

9

10

2

b
11

20

21

22

23

25

c
24

40

41

42

43

44

c

b

a

a

b

a

c

b

a

a

b

46

b

50

a

+
a

51

+

39

12

47

45

33 26

49

+

+

+

+

+

+

+

+

48

b
27

28

29

30

31

c

b

a

a

b
32

19

Figure 1 Suffix trie for the text T=”babaacbaab”

First the corpus is converted into a suffix data struc-
ture, depending on the task a suffix trie or suffix array
as explained in section 2. Iterating through these data
structures, we can extract recurring phrases and count
their frequencies. This step widely differs for uninter-
rupted, interrupted and mixed attribute collocations. In
a next step these candidates have to be evaluated. Us-
ing different association measures each candidate is
assigned a score, which is used to sort candidates in a
rank list (see section 3). This whole process must be
seen as semi-automatic, as a help for a human worker.
Although appropriate chosen extraction and ranking
methods can improve results, still errors concerning
recall and accuracy occur. Our result are presented in
section 4.

2 Extracting Collocation Candidates

In this project suffix tries have been used as one main
data structure. Asuffix of a text is a part of the text
ranging from a certain position to the end.Suffix tries
are trees, where each suffix of the corpus is a path
from of the root to a leaf of the tree (see Figure 1).
In tries all edges have only one assigned token. For
many applications it is necessary to introduce asen-
tinel character, which is a token that does not occur
in the normal set of tokens. This sentinel character
should be appended to the original text as a marker for
the end. Otherwise suffixes can exist, which are pre-
fixes of other suffixes. These suffixes would appear as
a part of a suffix within the tree. It is not distinguish-
able anymore, if it is a suffix on its own. Moreover

aab
aacbaab
ab
abaacbaab
acbaab

b
baab
baacbaab
babaacbaab
cbaab

Figure 2 Suffix array for the text T=”babaacbaab”

it helps to count the number of leaves. In Figure 1 a
suffix trie for T = babaacbaab is given. As sentinel
character the character+ is used.

For further information, the reader is referred to
[GI93] and [McC76].

Two variants of suffix tries are also used. The first vari-
ant are depth-bounded suffix tries, in which paths do
not exceed a given maximal length. As typically n-
grams should be extracted only in a given range forn,
this is sufficient for our needs. Another alternative is
a trie, where paths, which lead directly to leaves are
pruned.

In [MM93] suffix arrays are introduced. Instead of
storing suffixes as paths in a tree, they are simply
stored in lexicographic order (see Figure 2). This also
results in groups of suffixes starting with the same
prefixes. In terms of space efficiency, suffix arrays
beat suffix trees by a factor of 3 to 5. This advantage
is opposed to more time-consuming construction and
searching.

2.1 Uninterrupted Collocations

In this subsection the extraction of uninterrupted col-
locations is described. [NM94] introduces a method
for efficiently counting n-grams in large corpora. It
is based on a lexicographic sorted suffix array of
the whole corpus. Suffixes with common prefixes are
grouped together, so that by comparing prefixes of ar-
ray elements, frequencies of prefixes can be extracted.
For each suffix the number of tokens it has in common
with the succeeding suffix is computed. Nagao’s tech-
nique leads to a problem called fractional substrings.
If e.g. the phrasethe national academy of science of
Ukraineoccurs six times in the corpus as well as the
phrasethe national academyit is clear that the sec-
ond collocation is part of the first and should not be
considered on its own. On the other hand, there are
nested collocations which occur as part of others, but
nevertheless have a meaning on their own, e.g.:signif-
icant differenceas part ofstatistically significant dif-
ference. To decide whether a nested collocation can
stand on its own or not is a semantic problem not eas-
ily handled with statistical approaches alone. Ikehara
[ISSU96] ensures that each token occurs in at most
one n-gram, thereby completely ignoring nested col-

n

characteristic

adj

featureappearance

difference

pattern
crossing−
over

parameter

stress

Figure 3 Two stage suffix trie foradj:chacteristic n:*

locations, while [FA96] describes a method explicitly
for nested collocations.

2.2 Interrupted Collocations

For interrupted collocations we developed a new ap-
proach that searches for recurring subsequences in suf-
fix tries. Subsequences in contrast to substrings al-
low interruptions. These subsequences can be directly
taken as interrupted collocation candidates. We base
our work on the idea thatfrequent subsequences of
length i are generated by extending frequent subse-
quences of lengthi−1. Each subsequence of length 1,
which can also be seen as an n-gram of length 1 (a sin-
gle token), corresponds to an edge from the root. By
the methods described in subsection 2.1, frequent 1-
subsequences can be determined and stored. To com-
pute frequent 2-subsequences, we are considering only
the suffixes of frequent 1-subsequences. Given a spe-
cific 1-subsequence〈a〉 we want to extend, we know
all possible suffixes, which are represented by the sub-
tree computed in the previous step. All nodes of this
subtree can form a 2-subsequence〈a, b〉 if combined
with the 1-subsequence. As all descendants are con-
sidered, not only direct children,〈a, b〉 can correspond
to several nodes within the tree. All these nodes have
to be stored as suffix representatives of〈a, b〉. Again,
the subtrees of these nodes represent all possible suf-
fixes of 〈a, b〉. Opposed to the 1-subsequence, where
only one node/subtree had to be stored, now several
subtrees have to be considered. For counting, we use
leaf-counting. If a subsequence〈a, b〉 leads to several
nodes, we sum up the counts for all these nodes. Fur-
ther extension is now straightforward. For an(i − 1)-
subsequence we want to extend, we have a list of cor-
responding subtrees. For all descendants in all sub-
trees we are creatingi-subsequences and the accord-
ing node list, representing the suffixes.

2.3 Collocations with mixed Attributes

As for interrupted candidates we are building itera-
tively larger candidates from frequent smaller ones. A
collocation candidate should be extended either by a
fully specified token (category:base form) or by a to-
ken with specified category and arbitrary base form
(category:*). In order to simplify these operation, we
are building our suffix trie differently. Instead of as-
signing tokens to edges, we separate tokens into two
stages. The attribute ”category” leads to a new node,
from where the attribute ”base form” leads to the sec-
ond level. This results in a similar tree, but branching
is simply split up in a ”category step” and a ”base form
step”. See Figure 3 for an example.

3 Scoring and Ranking of Collocation
Candidates

Given a list of collocation candidates, we are now fac-
ing the task of selecting those, which are really collo-
cations and discarding the others. For each candidate
additional information is available. For more detailed
information and corresponding formulas see [MS99].

Using frequency to decide if a word combination is
a collocation or not, is the simplest technique. The
underlying idea states: if a combination is occurring
often enough, there must be a reason for that. So the
components of the word combination are assumed to
have a relation.

Another possibility is to look for candidates that form
a collocation that occur often enough and follow a
special grammatical pattern. For the pattern ”adjec-
tive noun” systemic treatment, soft tissue, postopera-
tive complicationare collocations in the MEDLINE
corpus.

Mutual information is an information theoretic mea-
sure, which can also be used as an association mea-
sure. Mutual information expresses the amount of in-
formation a specific event gives about the occurrence
of another event. For our application events are word
occurrences, soMI measures how much information
a word occurrence gives about another, or the amount
of certainty about the following words, a word occur-
rence gives us. In its original defintion, pointwise mu-
tual information for two specific eventsx′ andy′ is
given by:

MI(x, y) = log2

P (xy)
P (x)P (y)

[MS99] describes two important problems, which the
use ofMI imposes. The first problem is that the
concept of mutual information is not exactly what

we want for our application. Mutual information only
measures the strength of consequence, but how often
this consequence takes place (determined by the fre-
quency) is not taken into account. The second prob-
lem, arises with low frequency events. As noted by
many authors,MI fails if the observed frequencies get
very low (e.g. lower than 3). In that case the estimated
expected frequency gets extremely low, which assigns
a higher mutual information score. Although all as-
sociation measures show problematic behaviour with
low frequency data, mutual information seems to be
particularly worse. Of course this problem is closely
related to the first one. Rare events are more likely to
have a stronger association, as the variety of contexts
they occur in, is limited by their rarity.

Cost criteria measures for scoring collocations are
based on following idea: How much simpler would
our corpus get, if we regard collocation candidates as
units, represented by a single token. Kita [KKOY94]
provides an introduction to a cost criteria measure,
which embodies this concept in a simple way.

K(α) = (|α| − 1) · f(α)

with α being a collocation candidate (a sequence of to-
kens),|α| being the length ofα (number of tokens) and
f(α) being the occurrence frequency ofα in the whole
corpus. The justification of this formula is the follow-
ing: we are calculating the simplification we would
achieve in our corpus, if we regard all appearances of
α as a single unit. For each appearance we would have
1 instead of|α| tokens, which is a gain of|α| − 1. To
get the gain for the whole corpus, we multiply by the
numberα occurs in the text. This means, the higher
the cost is, the better the corresponding collocation
is. Moreover, this cost criterion is extended to handle
fractional substrings.

K(α) = (|α| − 1) · (f(α)− f(β))

Here,f(β) is the total frequency of larger candidates
containingα. For our above example (page 3) ”sta-
tistically significant difference” (occuring 19 times)
and ”significant difference” (occurring 69 times) this
would result in:

K(”significant difference”)
= (2− 1) · (69− 19) = 50

K(”statistically significant difference”)
= (3− 1) · 19 = 38

As above, the smaller candidate is not counted if it oc-
curs within the larger one. If this is not desired, [FA96]

Frequency Cost Criterion
candidate
of:prep the:det
in:prep the:det
and:cnj the:det
to:prep the:det
patient:n with:prep
on:prep the:det
for:prep the:det
with:prep the:det
have:v be:v
be:v a:det
effect:n of:prep
in:prep a:det
of:prep a:det
by:prep the:det
to:infp be:v

candidate
of:prep the:det
in:prep the:det
and:cnj the:det
to:prep the:det
patient:n with:prep
on:prep the:det
for:prep the:det
with:prep the:det
have:v be:v
be:v a:det
effect:n of:prep
in:prep a:det
of:prep a:det
by:prep the:det
the:det effect:n of:prep

Table 1 Top 15 candidates for frequency and cost criterion scoring

MI frequency candidate
98,71 2 of:prep il-12:n to:infp substitute:v for:prep[. . .]
97,33 2 the:det final:adj product:n be:v confirm:v[. . .]
97,14 2 tannin:n on:prep nutrient:adj utilisation:n[. . .]
97,11 2 pancreatitis:n with:prep diffuse:adj irregular:adj[. . .]
97,10 2 urinary:adj bladder:n and:cnj uretero-seminal:adj[. . .]
96,99 2 dose-response:adj relation:n be:v investigate:v[. . .]
96,96 2 prostatic:adj tissue:n in:prep urinary:adj[. . .]
96,83 2 bladder:n and:cnj uretero-seminal:adj vesicle:n[. . .]
96,50 2 tissue:n in:prep urinary:adj bladder:n and:cnj[. . .]
96,02 2 and:cnj diffusion:n behavior:n of:prep cs:en and:cnj[. . .]

Table 2 Top 15 candidates scored withMI

suggests a further modification, which handles nested
collocations in a better way:

K(α) = (|α| − 1) · (f(α)− f(β)/c(α))

wherec(α) is the number of different stringsβ which
containα. So ifα occurs only in a single larger candi-
date string, this formula equals Kita’s. But ifα occurs
in several larger collocation candidates,c(α) raises as
well as theK(α) score value, as if the smaller can-
didate is used in several larger collocations it can be
regarded as a unit of its own.

4 Experiments and Results

4.1 Collocational Candidates found

In this subsection extraction results are presented. In
table 1 we are comparing the 15 highest ranked can-
didates for frequency and a cost criterion. The simi-
larities between both result lists are obvious and sup-

port the statement that more complicated criteria can-
not easily beat frequency.

In table 2 the top 15 candidates scored withMI are
shown, whereas in table 3MI scoring combined with
a minimum frequency threshold. Contrasting tables 2
and 3 demonstrates how low frequency can ruin the
results. In fact the prevalent frequency of 2 in table 2
might even be an artifact produced by the fact that the
same abstract made it two times into MEDLINE.

However, closer examination of table 3 shows what
this project is all about and into which direction we
want to develop the automatic pattern extraction. The
first three lines are covered by the phrase pattern

the n:* of this study be to

being a prototypical example of the patterns we ulti-
mately want to find automatically for several reasons.

• The pattern has a fixed part which is large enough

MI frequency candidate
36,04 32 the:det aim:n of:prep this:det study:n be:v to:infp
35,28 14 the:det purpose:n of:prep this:det study:n be:v to:infp
34,48 12 the:det objective:n of:prep this:det study:n be:v to:infp
32,72 17 play:v an:det important:adj role:n in:prep
32,58 14 95:adj %:n confidence:n interval:n
31,75 33 aim:n of:prep this:det study:n be:v to:infp
30,94 14 purpose:n of:prep this:det study:n be:v to:infp
30,37 11 there:adv be:v no:det significant:adj difference:n
30,26 13 objective:n of:prep this:det study:n be:v to:infp
30,09 11 national:adj academy:n of:prep science:n
29,92 10 palladin:n institute:n of:prep biochemistry:n
29,44 13 of:prep this:det study:n be:v to:infp evaluate:v
28,80 33 the:det aim:n of:prep this:det study:n be:v
28,09 15 the:det purpose:n of:prep this:det study:n be:v
27,76 21 play:v an:det important:adj role:n

Table 3 Top 15 candidates with frequency≥ 10 scored withMI

for the pattern to be very precise in matching,
i.e. the chance that it will spuriously match in the
wrong context is almost negligible.

• The pattern has a variable part (the wildcard) ”in
the middle”, and thereby allows to recover this
part of the sentence as a separate phrase without
risk of getting the border of the phrase wrong.

• As a side effect, phrases found for the wild-
card have a high probability to be synonyms of
each other. The finding is one step in the di-
rection of recovering semantic information au-
tomatically from text. The wordsobjective, aim
and purposeare indeed listed as synonyms in
Merriam-Websters’s collegiate thesaurus3.

The patternthe n:* of this study be tois a mixed collo-
cation where the wildcard can be substituted by nouns
like objective. However the place of the wildcard syn-
tactically allows full noun phrases. If we allow the
wildcard to model arbitrary gaps (interrupted collo-
cations), we can even cover noun phrases. While we
are not yet in the position to find such collocations
fully automatically, the first results to this regard are
reported below.

For interrupted and mixed collocations scoring is
much more difficult, so we stick with frequency. De-
spite its simplicity, several authors report very good re-
sults using pure frequency scoring. [KE01] concludes,
that for scoring PP-verb (prepositional phrase - verb)
collocations, ”none of the association measures is sig-
nificantly better than mere co-occurrence frequency”.

However, frequency was not able to recoverthe *:n
of this study be toas a mixed collocation. Only after

3http://www.m-w.com/cgi-bin/thesaurus

applying a heuristic along the lines of:

1. exactly one baseform-wildcard,

2. at least 3 realisations of the pattern in the corpus,

3. a hand chosen noun of interest (e.g.study)

the collocation was found early in the result list. Tak-
ing diseaseas the noun of interest, the patternthe *:n
of the disease, realised withdiagnosis , patho-
physiology or course , can be found on rank 10
of the result list. Applying the pattern to texts, the
word realising the wildcard can be used to categorize
texts according to what (diagnosis, pathophysiology,
course) is reported about a disease. Therefore the pat-
tern is particularly useful for Information Extraction.
Ranked first in this same result list isof *:adj disease
realised withbasicor infectious. It shows that typical
simple syntactic constructs can be recovered as mixed
collocations.

In table 4 the results for interrupted collocations are
given. Here not only frequency but also a certain lin-
guistic pattern is used: verb preposition. As an exam-
ple of how the gaps can be filled, consider the phrases
report cases/details/sightings/incidents of. The collo-
cations listed are not as specific as the one described
above simply because they contain only a few words,
but they nevertheless represent patterns which help to
create patterns for information extraction.

Manning [MS99], [Kre00a] remarks that the combi-
nation of a statistic technique combined with simple
linguistic knowledge can produce interesting results.

frequency candidate
12 v:consist prep:of
11 v:report prep:of
10 v:treat prep:by
7 v:use pep:of
7 v:perform prep:in
6 v:use prep:for
6 v:present prep:of
6 v:find prep:in
6 v:achieve prep:of
5 v:treat prep:with
5 v:treat prep:of
5 v:show prep:of
5 v:range prep:to
5 v:range prep:from
5 v:occur prep:in

Table 4 Results for interrupted collocations

 0

 20

 40

 60

 80

 100

 120

 0 5000 10000 15000 20000 25000 30000

T
im

e
[s

]

Corpus Size

Runtimes for building Suffix Data Structures

Suffix Trie
Disc-based Suffix Trie

Recursive Suffix Trie
Suffix Array

Fast Suffix Array

Figure 4 Runtime for constructing the necessary data
structures

4.2 Performance of different algorithms

In this section the scalability of the different ap-
proaches is examined. Runtimes are measured de-
pending on different variables. The goal of these per-
formance tests is to evaluate differences in scalability
between different approaches and implementations.
All experiments have been executed on a 500-MHz
Intel Celeron with 192 MB of main memory. As pro-
gramming language Python [Lut96] was used. The
problem sizes have been chosen, that no swapping
was necessary. For timing experiments, the average of
ten experiment runs have been used. As can be seen,
for all problem sizes, that fit into main memory, the
computational times are within an acceptable range.
All experiments can be executed in a few minutes.
The problematic bottle-neck seems to be memory con-
sumption.

The following implementations are available:

 0

 20

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000 25000 30000

T
im

e
[s

]

Corpus Size

Runtimes for extracting interrupted patterns

Extracting episodes of length 3

Figure 5 Runtime for extracting interrupted colloca-
tions of length three

 0

 50

 100

 150

 200

 250

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
[s

]

Episode length

Runtimes for extracting interrupted patterns

1000 words
10000 words
30000 words

Figure 6 Runtime for extracting interrupted colloca-
tion from a certain number of words

Suffix Trie is an implementation using two hashta-
bles, one for edges and one for nodes.

Recursive Suffix Trie uses a recursive definition of
node objects which contain references to child
nodes.

Disc-based Suffix Trie is an attempt to make usage
of larger corpora possible. As an extension of the
suffix trie, the hash tables containing edges and
nodes, are stored in disc based dictionaries.

Suffix Array is a straightforward implementation of
Nagao’s suffix arrays. As suffix references, in-
dexing into the corpus is used.

Fast Suffix Array builds the table of suffixes with
the suffixes themselves, not using references.
This takes more memory space, but allows for
faster sorting, as no dereferencing has to be done
for each comparing step.

The results when constructing the different data struc-
tures can be found in Figure 4. The favorites are the

suffix trie implementation using hash tables and the
fast suffix array. But we can use the suffix array for ex-
traction of uninterrupted collocation candidates only,
for interrupted candidates and candidates with mixed
attributes, suffix tries are needed.

In Figures 5 and 6 runtime for extracting collocational
candidates for interrupted collocations is shown. As
this approach was newly developed, the runtime is of
special interest. In Figure 5 episode length (in this case
three) versus corpus size is shown where as in Figure
6 the opposite relation is depicted.

5 Conclusions and Future Work

In this paper we presented an approach of extracting
collocations from biomedical syntactically annotated
corpora. Unfortunately exact evaluation of extracted
candidates in terms of recall and accuracy is not pos-
sible in this work. Manually crafted references have
to be available to be compared with the automatically
extracted suggestions. This task is extremely time con-
suming and requires extensive lexicographic knowl-
edge and experience. So for evaluation, we have to re-
strict our demands to a more subjective review of re-
sults. Since even in the long run it can not be expected
that any method will produce 100% viable pattern can-
didates, for practical applications of pattern finding a
method which generates a decent number of useful
pattern candidates fast and easy is sufficient.

Now that the tools to formulate and run patterns are in
place, the focus of Biopath moves to pattern writing.
Consequently, the result of the work reported here be-
comes more important. After mixed interrupted col-
location candidates can be generated easily, differ-
ent scoring schemes must be evaluated and heuristic
methods need to be tested in order to produce collo-
cations which can be immediately used as patterns. A
lot of papers have been published on scoring, see e.g.
[Kre00b], [EK01] and [KE01]. Finally the complete
corpus with all its information should be taken into
account.

Acknowledgements

The authors thank Dr. Mark Minas for his helpful
comments concerning the data structures used.

References
[Ben89] Morton Benson. The structure of the colloca-

tional dictionary. International Journal of Lexi-
cography, Oxford, 1989.

[CH89] Kenneth W. Church and Patrick Hanks. Word
association norms, mutual information, and lex-
icography. In Proceedings of the 27th. An-

nual Meeting of the Association for Compu-
tational Linguistics, pages 76–83, Vancouver,
B.C., 1989. Association for Computational Lin-
guistics.

[EK01] Stefan Evert and Brigitte Krenn. Methods for
the qualitative evaluation of lexical association
measures. InProceedings of the 39th Annual
Meeting of the Association for Computational
Linguistics, Toulouse, France, 2001.

[FA96] K.T. Frantzi and S. Ananiadou. Extracting
nested collocations. InProceedings from the
16th International Conference on Computa-
tional Linguistics (COLING-96), pages 41–46,
1996.

[GI93] Roberto Grossi and G. Italiano. Suffix trees and
their applications in string algorithms. InProc.
1st South American Workshop on String Pro-
cessing (WSP 1993), pages 57 –76, 1993.

[ISSU96] Ikehara, Satoru, Shirai, and Uchino. A statisti-
cal method for extracting uninterrupted and in-
terrupted collocations from very large corpora.
In 16th International Conference on Computa-
tional Linguistics: COLING-96, pages 574–579,
1996.

[KE01] Brigitte Krenn and Stefan Evert. Can we do
better than frequency? a case study on extract-
ing pp-verb collocations. InProceedings of
the ACL Workshop on Collocations, Toulouse,
France, 2001.

[KKOY94] K. Kita, Y. Kato, T Omoto, and Y. Yano. A
comparative study of automatic extraction of
collocations from corpora: Mutual information
vs. cost criteria. InJournal of Natural Language
Processing, Vol.1, No.1, pages 21–33, 1994.

[Kre00a] Brigitte Krenn. Collocation mining: Exploiting
corpora for collocation identification and repre-
sentation. InProceedings of KONVENS 2000,
2000.

[Kre00b] Brigitte Krenn. Empirical implications on lexi-
cal association measures. InProceedings of The
Ninth EURALEX International Congress, 2000.

[Lut96] M. Lutz. Programming Python. O’Reilly and
Associates, 1996.

[McC76] E.M. McCreight. A space-economical suffix
tree construction algorithm. 1976.

[MM93] Udi Manber and Gene Myers. Suffix arrays: A
new method for on-line string searches.SIAM J.
ComptitLq, 22(5):935–948, 1993.

[MS99] Christopher D. Manning and Hinrich Schuetze.
Foundations of Statistical Natural Language
Processing, Collocations. The MIT Press, Cam-
bridge, Massachusetts, 1999.

[NM94] M. Nagao and S. Mori. A new method of n-gram
statistics for large number of n and automatic
extraction of words and phrases from large text
data of japanese. InCOLING-94, pages 611–
615, 1994.

