
Parsing By Chunks

Steven P. Abney
Bell Communications Research

November 10, 1994

0 Introduction

I begin with an intuition: when I read a sentence, I read it a chunk at a time.
For example, the previous sentence breaks up something like this:

(1) [I begin] [with an intuition]: [when I read] [a sentence], [I read it]
[a chunk] [at a time]

These chunks correspond in some way to prosodic patterns. It appears, for
instance, that the strongest stresses in the sentence fall one to a chunk, and
pauses are most likely to fall between chunks. Chunks also represent a gram-
matical watershed of sorts. The typical chunk consists of a single content word
surrounded by a constellation of function words, matching a fixed template.
A simple context-free grammar is quite adequate to describe the structure of
chunks. By contrast, the relationships between chunks are mediated more by
lexical selection than by rigid templates. Co-occurence of chunks is determined
not just by their syntactic categories, but is sensitive to the precise words that
head them; and the order in which chunks occur is much more flexible than the
order of words within chunks.
The work I would like to describe is an attempt to give content to these intu-

itions, and to show that parsing by chunks has distinct processing advantages,
advantages that help explain why the human parser might adopt a chunk-by-
chunk strategy.

1 Chunks

There is psychological evidence for the existence of chunks. Gee and Gros-
jean 1983 examine what they call performance structures. These are structures
of word clustering that emerge from a variety of types of experimental data,
such as pause durations in reading, and naive sentence diagramming. Gee and
Grosjean argue that performance structures are best predicted by what they

1

call `-phrases. `-phrases are created by breaking the input string after each
syntactic head that is a content word (with the exception that function words
syntactically associated with a preceding content word—in particular, object
pronouns—group with the preceding content word). The chunks of sentence (1)
are `-phrases.
Unfortunately, Gee and Grosjean must make some undesirable syntactic as-

sumptions. For example, they assume that prenominal adjectives do not qualify
as syntactic heads—otherwise, phrases like a big dog would not comprise one
chunk, but two. Also, Gee and Grosjean do not assign syntactic structure to
chunks. To remedy these deficiencies, I assume that a chunk has syntactic struc-
ture, which comprises a connected subgraph1 of the sentence’s parse-tree, and
I define chunks in terms of major heads. Major heads are all content words
except those that appear between a function word f and the content word that
f selects.2,3 For example, proud is a major head in a man proud of his son, but
proud is not a major head in the proud man, because it appears between the
function word the and the content word man selected by the.
The parse tree segments associated with some sample chunks are illustrated

in (2).

(2)

DP

NP

the bald man sitting

CP

IP

was

VP

VP

on his suitcase

PP

DP

NP

They are determined as follows. Let h be a major head. The root of the
chunk headed by h is the highest node in the parse tree for which h is the
s-head, that is, the ‘semantic’ head. Intuitively, the s-head of a phrase is the
most prominent word in the phrase. For example, the verb is the s-head of a
sentence, the noun is the s-head of a noun phrase or prepositional phrase, and
the adjective is the s-head of an adjective phrase. The s-head is not necessarily
the same as the syntactic head. In GB, for example, an abstract element Infl,
not the verb, is taken to be the head of the sentence, and the complementizer
(C) is often taken to be the head of an embedded sentence (CP). (See Chomsky

1A chunk’s structure is in fact a tree, but it is not necessarily a subconstituent of the global
parse-tree. In particular, the chunk’s root node may have some descendants in the global tree
that are absent from the chunk’s parse-tree.
2I consider the relation between a function word (e.g., determiner) and associated content-

word head (e.g., noun) to be one of selection. See Abney 1987 for arguments.
3There is one case that this definition does not handle. We wish to say that a pronoun that

heads a prepositional phrase is a major head, despite being a function word, not a content
word. I have no more elegant solution at present than to add a disjunctive clause to the
definition of major head: “a major head is any content word that does not appear between a
function word f and the content word f selects, OR a pronoun selected by a preposition.”

2

1986, for example.) P is generally taken to be the head of PP, not the noun.
And under the DP-analysis (Abney 1987), which I adopt, the determiner is the
head of the noun phrase, and a degree element, not the adjective, is the head
of the adjective phrase. S-heads can be defined in terms of syntactic heads,
however, as follows. If the syntactic head h of a phrase P is a content word, h
is also the s-head of P . If h is a function word, the s-head of P is the s-head of
the phrase selected by h.
The parse-tree TC of a chunk C is a subgraph of the global parse-tree T .

The root r of TC is the highest node whose s-head is the content word defining
C. For example, in (2), man, sitting, and suitcase are the major heads. r =
DP is the highest node whose s-head is man; r = IP is the highest node whose
s-head is sitting; and r = PP is the highest node whose s-head is suitcase. TC

is the largest subgraph of T dominated by r that does not contain the root of
another chunk. In (2), the parse-tree of man’s chunk is the subtree rooted in
DP. The parse-tree of sitting ’s chunk is the subtree rooted in CP (i.e., the entire
global parse-tree) with the subtrees under DP and PP excised. The parse-tree
of suitcase’s chunk is the subtree rooted in PP.
There is a single special case. Terminal nodes are excluded from a chunk if

their inclusion would cause the chunk to have a discontinuous frontier. Exam-
ples of such ‘orphan nodes’ are complementizers, where the subject intervenes
between the complementizer and the rest of the verb chunk, and some preposi-
tions, where they are separated from the rest of the noun chunk by an intervening
possessor. For example:

(3)

DP

that John sang

CP

IP

VP DP

in John’s house

PP

DP

NP

`-phrases are generated from chunks by sweeping orphaned words into an
adjacent chunk. As a consequence, `-phrases, unlike chunks, do not always span
connected subgraphs of the parse tree. In (3), for example, that John constitutes
a `-phrase; but syntactically, the phrase that John contains two unconnected
fragments. The correspondence between prosodic units and syntactic units is
not direct, but mediated by chunks. `-phrases are elements in a prosodic level of
representation. Chunks and global parse-trees are elements of two different levels
of syntactic representation. Global parse-trees and `-phrases are both calculated
from chunks, but neither global parse-trees nor `-phrases are calculated from
the other.
A final issue regarding the definition of chunks is the status of pronouns. On

the one hand, we would like a clean division between the grammar of chunks
and the grammar of interchunk relations. Since pronouns function syntactically
like noun chunks—in particular, they can fill subject and object positions—we

3

would like to consider them chunks. On the other hand, they are generally
stressless, suggesting that they not be treated as separate chunks (we did not
treat them as separate chunks in (1), for example). A reasonable solution is to
consider them to be lexical noun phrases, and assign them the same status as
orphaned words. At the level of chunks, they are orphaned words, belonging
to no chunk. At the level of `-phrases, they are swept into an adjacent chunk.
And at the level of syntax, they are treated like any other noun phrase.
We are now in a position to be more specific about which adjacent chunk

orphaned words are swept into. If the orphaned word takes a complement, it
is swept into the nearest chunk in the direction of its complement (i.e., the
following chunk). Otherwise it is swept into the nearest chunk in the direction
of its syntactic governor. For example, pronouns are function words that do not
take complements. (To the best of my knowledge, they are the only function
words that do not take complements.) Subject pronouns are swept into the
following chunk, and object pronouns are swept into the preceding chunk.
The reader can verify that the units marked in (1) are `-phrases (not chunks),

in accordance with the definitions given in this section.

2 Structure of the Parser

A typical natural language parser processes text in two stages. A tokenizer/
morphological analyzer converts a stream of characters into a stream of words,
and the parser proper converts a stream of words into a parsed sentence, or
a stream of parsed sentences. In a chunking parser, the syntactic analyzer is
decomposed into two separate stages, which I call the chunker and the attacher.
The chunker converts a stream of words into a stream of chunks, and the attacher
converts the stream of chunks into a stream of sentences.
The attacher’s name is derived from the manner in which it assembles chunks

into a complete parse tree. It attaches one chunk to another by adding missing
arcs between parse-tree nodes. In (2), for example, the attacher must add an
arc from the IP node to the DP node dominating the bald man, and it must add
an arc from the lower VP node to the PP node.
To illustrate the action of these three stages, the following are the streams

output by each when parsing the sentence

The effort to establish such a conclusion of course must have two
foci, the study of the rocks and the study of the sun.
(taken from Williams 1986)

Words:

f[Det the]g f[N effort]g f[Inf-To to] [P to]g f[V establish]g f[Predet such]
[Det such] [Pron such]g f[Det a]g f[N conclusion]g f[Adv of course]g
f[N must] [V must]g f[V have]g f[Num two]g f[N foci]g f[Comma ,]g
. . .

4

Words are sets of readings. Readings, but not words, have unique syntactic
categories, feature-sets, etc. There is no one-one correspondence between words
and pieces of text separated by whitespace. For example, we permit words with
embedded whitespace, such as of course.

Chunks:

[DP [Det the] [NP [N effort]]]
[CP-Inf [IP-Inf [Inf-To to] [VP [V establish]]]]
[DP [Predet such] [Det a] [NP [N conclusion]]]
[CP [IP [AdvP [Adv of course]] [Modal will] [VP [V have]]]]
[DP [NP [Num two] [N foci]]]
[Comma ,]
[DP [Det the] [NP [N study]]]
[PP [P of] [DP [Det the] [NP [N rocks]]]]
. . .

Lexical ambiguity is often resolvable within chunks, as seen here. Single-word
chunks represent a common exception. A single word does not provide enough
context to resolve lexical ambiguity.

Parse:

[CP [IP [DP the effort [CP-Inf to establish [DP such a conclusion]]]
[VP of course must have [DP two foci]]
[Appos [DP [DP the study [PP-of of the rocks]]

[Conj and]
[DP the study [PP-of of the sun]]]]]]

I have omitted chunk-internal nodes that are not themselves the roots of chunks,
to make it clear what structure the attacher itself has built. In fact, though,
there is no distinction in the final parse between nodes built by the chunker and
nodes built by the attacher.

3 Chunker

The chunker is a non-deterministic version of an LR parser (Knuth 1965), em-
ploying a best-first search. I first give a brief description of LR parsing, for those
unfamiliar with it. (A much more detailed discussion can be found in Aho and
Ullman 1972.)

3.1 LR Parsing

An LR parser is a deterministic bottom-up parser. It is possible to automatically
generate an LR parser for any of a large class of context-free grammars. The

5

parser shifts words from the input string onto the stack until it recognizes a
sequence of words matching the right-hand side of a rule from the grammar. At
that point, it reduces the sequence to a single node, whose category is given in
the left-hand side of the rule.
For example, consider the grammar

1. S ! NP VP
2. NP ! Det N
3. NP ! N
4. VP ! V NP

Suppose the input is N V N. The parser shifts the first N onto the stack. It
recognizes the right-hand side of rule 3, and reduces N to NP. It continues as
follows:

Stack Input Action

[] N V N SH N
[N] V N RE NP!N
[NP] V N SH V
[NP V] N SH N
[NP V N] RE NP!N
[NP V NP] RE VP!V NP
[NP VP] RE S!NP VP
[S] Accept

Control is mediated by LR states, which are kept on a separate control stack.4

LR states correspond to sets of items. An item is a rule with a dot marking
how much of the rule has already been seen. An example of an item-set is:

(4)

2
66664

VP ! V † NP
VP ! V † S
NP ! †Det N
NP ! †N
S ! †NP VP

3
77775

The kernel of an item-set is the set of items with some category preceding
the dot. In (4), the kernel is [VP! V†NP, VP! V†S]. The rest of the item-set
can be generated from the kernel, by adding items for every expansion of every
category after a dot. In (4), we add NP ! †N, NP ! †Det N because of the
NP after the dot in VP ! V†NP. N and Det, which follow the dot in the new
items, generate no new items, because they are terminals. VP! V†S generates
4In fact, the standard LR parser has only a control stack. Instead of building a parse tree,

it outputs a string of rule-numbers, one for each reduction. Such a string encodes a parse-tree:
reversed, it specifies a rightmost derivation of the input string. ‘LR’ stands for ‘Left-to-right,
Rightmost derivation.’

6

the item S ! †NP VP. The NP after the dot generates the items NP ! †N,
NP ! †Det N, but since they are already present, nothing changes.
Item-sets control the computation as follows. If a terminal symbol follows

the dot in some item, a shift on a word of that category is legal. For example, if
(4) is at the top of the control stack, we may shift on either Det or N. Suppose
we shift an N. The kernel of the new item-set is determined by stepping over
the N in any item in which an N follows the dot. In this case, the new kernel
is [NP ! N†]. (Since there are no non-terminals following any dot, this kernel
happens to be the entire item-set.)
When the dot is at the end of some rule, a reduction is permitted on that

rule. To continue our example, the item-set [NP ! N†] calls for reduction of N
to NP. We pop n elements off both the control stack and the parse-tree stack,
where n is the number of children in the recognized rule. In this case, n = 1.
This brings (4) back to the top of the control stack. Now we build an NP and
push it onto the parse-tree stack, and we determine the kernel of the new state
by stepping over NP in any items in (4) with an NP after the dot. The new
kernel is [VP ! V NP†, S ! NP†VP]. We push the corresponding state onto
the control stack. The configuration now is:

Control Stack Parse Stack2
66664

VP ! V†NP
VP ! V†S
NP ! †Det N
NP ! †N
S ! †NP VP

3
77775

2
664

VP ! V NP †
S ! NP†VP
VP ! †V NP
VP ! †V S

3
775 V NP

Now we have a conflict: we may either reduce by rule VP! V NP (because
of the item VP ! V NP†), or shift a V (because of the items VP ! †V NP
and VP ! †V S). In this case, lookahead decides the conflict. We shift if the
next word is a V, and reduce if there is no input left. In other cases, lookahead
does not resolve the conflict, and we have a genuine next-action conflict. The
LR grammars are those context-free grammars that do not generate next-action
conflicts; they can be parsed deterministically by an LR parser.

3.2 Grammar

In the current implementation, I am using the following (toy) grammar for
chunks:

7

(5)

PP ! P DP
DP ! Predet? D? NP
DP ! QPPron
NP ! (Num j QP)? (AP (Comma? Conj? AP)*)? N0
AP ! AdvP? A0

QP ! AdvP? Q
QPPron ! AdvP? QPron
DegP ! AdvP? Deg AP

j AdvP? Deg AdvP
AdvP ! Adv? Adv
CP ! IP
IP ! (AdvP? Infl)? (VP j AuxP)

AuxP ! AdvP? Aux (VP j AuxP)
VP ! AdvP? V
PtcP ! AdvP? (Ing j En)

N0 ! N03sg* N
N03sg ! (A j Ing j En j Num j N3sg) Hyphen N3sg
A0 ! ((N3sg j Adv) Hyphen)? (A j Ing j En)

The lexicon includes ’s and possessive pronouns in category D. Modals and
to are in category Infl. Certain selectional constraints are imposed, though
they are not represented in (5). For example, Aux imposes restrictions on its
complement, and we must also guarantee that a DP whose determiner is ’s does
not appear in a PP chunk.
Grammar (5) is obviously incomplete; I present it here mostly for illus-

trative purposes. However, in its defense, it does contain the most common
structures. Even though it represents only a small portion of a complete gram-
mar for chunks, spotchecks of random text samples indicate that it covers most
chunks occuring in natural text.

3.3 Non-Determinism in the Chunker

The chunker is a non-deterministic version of the LR parser just described.
There are two sources of non-determinism in the chunker. First, the points
at which chunks end are not explicitly marked in the word stream, leading to
ambiguities involving chunks of different lengths. Second, a given word may
belong to more than one category, leading to conflicts in which the chunker
does not know e.g. whether to shift the following word onto the stack as an N
or as a V. As a result, if we graph the computation path of the chunker on a
given input—that is, let each node be a snapshot of the chunker, and each arc
be a parsing action—the result is not a line, but a tree. The chunker performs
a best-first search through this tree of legal computations.
The aim of using best-first search is to approach deterministic parsing with-

8

out losing robustness. The success of the Marcus parser and similar determin-
istic natural-language parsers (e.g., Fidditch: Hindle 1983) gives one cause to
believe that a deterministic or near-deterministic parser for English is possible.
However, Marcus-style deterministic parsing has two related drawbacks. First,
the complexity of grammar development and debugging increases too rapidly.
I believe this results partly from the use of a production-rule grammar format,
and partly from the fact that grammatical and heuristic information are folded
together indiscriminately. Second, if the parser’s best initial guess at every
choice point leads to a dead end, the parser simply fails. It is much prefer-
able to separate heuristic information from grammatical information, and use
a non-deterministic architecture. As heuristics improve, we approach determin-
istic parsing on non-garden-path sentences. At the same time, sentences that
are either genuine garden paths, or garden paths according to our imperfect
heuristics, do not cause the parser to fail, but merely to slow down.
Non-determinism is simulated straightforwardly in the chunker. A configu-

ration is a snapshot of a computation. From each configuration, there are some
number of possible next actions. The chunker builds one task for each possible
next action. A task is a tuple that includes the current configuration, a next
action, and a score. A score is an estimate of how likely it is that a given task
will lead to the best parse. Tasks are placed in a priority queue according to
their score.
For example, suppose we have the simple grammar

Chunk ! NP
Chunk ! VP
NP ! N
VP ! V

If the first word in the sentence is water, the chunker creates two tasks:

(([], [], 0), [SH waterN [NP ! N†]], s1)

(([], [], 0), [SH waterV [VP ! V†]], s2)

The first element in each task is the current configuration, ([], [], 0)—i.e.,
the control and parse stacks are empty and the current word is word 0. The
second element is the action to be performed: either shift water onto the stack
as an N and go to state [NP ! N†], or shift water onto the stack as a V and
go to state [VP ! V†]. The final element is the task’s score. The two tasks are
placed on the queue, with the best task first in the queue.
The chunker’s main loop takes the best task from the queue, and makes

that task’s configuration be the current configuration. It executes the task’s next
action, producing a new configuration. Then a new set of tasks are computed for
the new configuration, and placed on the priority queue, and the cycle repeats.

9

To continue our example, executing the first task yields configuration ([[NP!N†]],
[N], 1). There is only one possible next action, [RE NP! N], producing a single
new task. Assuming its score is better than s2, the new queue is:

(([[NP ! N†]], [N], 1), [RE NP! N], s3)

(([], [], 0), [SH waterV [VP ! V†]], s2)

The parser will execute the reduction task next.
Scores for tasks are determined by the following factors:

1. Lexical frequencies

2. General category preferences: e.g., prefer present participle to A,
prefer N-N modification to adjectival modifier

3. LR-conflict resolution (E.g., prefer shift to reduce)

4. Agreement: disagreement does not produce ungrammaticality, but
dispreference

A score is a vector of length 4, one position for each factor. Values range
from 0 to negative infinity, and represent log frequency, for the lexical frequency
factor, and number of violations, for the other factors. The natural order on
scores is a partial order: s1 < s2 iff fi(s1) < fi(s2), for every factor f1 : : : f4.
This partial order can be embedded in a total order by assigning weights to
each factor: s1 < s2 iff

P
i wifi(s1) <

P
i wifi(s2). The weights are currently

assigned arbitrarily, though a method for fixing them empirically is clearly de-
sirable.
As is desirable for best-first search, scores decrease monotonically as the

parse proceeds. This guarantees that the first solution found is a best solution.
Namely, each task represents a tree of possible computations. By making the
scoring function monotonic decreasing, we assure that solutions derivable from
some task t have scores no better than t’s score. Since the first solution found
has a score at least as good as that of any task still on the queue,5 and every
task on the queue has a score at least as good as any solution derivable from it,
the first solution found has a score at least as good as that of any other solution.

3.4 Deciding Where a Chunk Ends

There is a problem with deciding where a chunk ends, inasmuch as the ends
of chunks, unlike the ends of sentences, are not marked in text. Given that, in
general, a single chunk will not cover the entire input, we would like to return
the most highly-valued chunk that covers some prefix of the input. A straight-
forward way to do that is to pretend that every word has an alternate reading

5A solution’s score is the same as the score of the ‘Accept’ task that generated it.

10

as an end-of-input marker. (LR parsers treat end-of-input as a grammatical
category, albeit a special one.)
Hallucinating end-of-input markers at every position in the string sounds

absurdly expensive, but in fact it is not. One piece of information that we must
keep with a task, whether we hallucinate end-of-input marks or not, is which
subset of the readings of the lookahead word the task is legal on. For example,
suppose we have just shifted the word many onto the stack as a Q, and the
current configuration is:

(6) [[QP ! Q†]], [Q], 1

(That is, [QP !Q†] is the sole LR state on the control stack, Q is the sole
category on the parse stack, and the next word in the input is word 1.) The next
word is are, let us say, which has two readings. It has a very common reading
as a verb, and a very rare reading as a noun (a unit of measure of area). There
is only one legal next action from configuration (6), namely, Reduce QP ! Q.
(This QP will ultimately be a modifier of the head noun are.) However, that
reduction is legal only if the next word is a noun. Since the noun reading of are
is rare, we should disprefer the task T calling for reduction by QP ! Q. But
we only know to disprefer T if we keep track of which subset of readings of the
lookahead word T is legal on.
If we keep sets of lookahead readings with each task, we can slip fake end-

of-input markers in among those lookahead readings. The only operations we
perform which we would not have performed anyway are reductions that are
legal only if the lookahead is a fake end-of-input marker. If we score such
reductions relatively low (that is, if we prefer longer chunks to shorter chunks),
it turns out that hallucinating end-of-input markers everywhere causes us to
execute only a few tasks that we would not have executed otherwise.
The same technique is used for error recovery in the attacher. If it is not

possible to get a parse for the entire sentence, the most highly-valued parse for
some prefix of the input is returned. Since sentences often contain structures
that were not anticipated in the grammar, and since we want to get as much
information as possible even out of sentences we cannot completely parse, error
recovery of this sort is very important.

4 Attacher

4.1 Attachment Ambiguities and Lexical Selection

The attacher’s main job is dealing with attachment ambiguities. In basic con-
struction, it is identical to the chunker. It simulates a non-deterministic LR
parser, using the four heuristic factors given earlier. But in accordance with the
importance of attachment ambiguity resolution, the attacher has two additional
factors in its scores:

11

5. Prefer argument attachment, prefer verb attachment

6. Prefer low attachment

These factors are used to rate alternative attachment sites. Finding an at-
tachment as argument is more important than finding an attachment as verb,
so potential attachment sites are ranked as follows: attachment as verb argu-
ment (best), attachment as argument of non-verb, attachment as verb modifier,
attachment as modifier of non-verb. The second factor is relative height of at-
tachment sites, counted as number of sentence (IP) nodes below the attachment
site in the rightmost branch of the tree at the time of attachment.
The attacher also has special machinery, in addition to the basic machin-

ery that it shares with the chunker. Unlike the chunker, the attacher must
deal with words’ selectional properties. (Indeed, the fact that lexically-specified
complements are frequently optional is precisely the source of most attachment
ambiguities the attacher faces.) The lexical selectional properties of a head
determine which phrases can co-occur with that head. A given word has a
frameset, that is, a set of subcategorization frames. Each frame contains a list
of slots, representing the arguments the head takes. There is a good deal of free-
dom in the order in which arguments appear, but there are also some constraints.
For example, direct objects must appear first, and sentential complements must
appear last. The current implementation of the attacher recognizes two posi-
tional constraints, namely, ‘only appears first’ (annotation on slot: ‘<’) or ‘only
appears last’ (‘>’). Arguments are also marked as obligatory (no extra annota-
tion), optional (‘?’), or iterable (‘*’). For example, a typical subcategorization
frame would be [DP<?, PP*, CP>], meaning that the word in question takes
an optional direct object (which must be the first complement, if it appears at
all), any number of PP’s, and an obligatory final embedded clause.
In addition to frames, a frameset contains a specification of the adjuncts

that can appear with the head in question. A ‘fleshed-out’ frame includes each
of those adjuncts, in addition to the slots explicitly stored with it.
It is possible to convert a set of subcategorization frames into a set of context-

free rules of the form XP ! Y <args&modifiers>. Y is a specific lexical item
of category X, and <args&modifiers> is some permutation of some fleshed-out
frame of Y that does not violate any of the slot constraints.6 Where there are
n arguments and modifiers, there are 2n such sequences, less those that violate
some constraint. Thus, for a given word with m frames, there correspond m2n

context-free rules, less the ones that violate a constraint. In the worst case, we
would have pm2n such rules, where p is the number of words in the dictionary.
The actual number is much smaller, because words do fortunately group

themselves into classes with respect to their subcategorization frames. How-
ever, even if the grammar that results from this approach is substantially smaller

6Actually, it is more complicated than a simple sequence of categories, because of the
presence of iterative categories in frames. However, the complications introduced by iterative
categories do not compromise the argument made here, so I ignore them.

12

than pm2n, it almost certainly represents a larger grammar than is practical.
It appears a better space-time tradeoff in this case to process subcategorization
frames at run time, not at compile time. For this reason, in addition to LR ma-
chinery for handling rules that are insensitive to subcategorization, the attacher
also has special facilities for dealing with subcategorization frames at run time.
Those facilities are as follows. Consider a word w with subcategorization

frames. When we shift a chunk headed by w onto the stack, we suspend process-
ing and look for complements of w. The general idea is to build a subgrammar
on the fly that is looking for any category that could be the first complement of
w, and parse that subgrammar. When we finish parsing the subgrammar—that
is, when we execute an Accept action—the top node on the stack will be w’s
first complement. We attach it to w. Then we calculate the set of possible
categories for the next complement of w, build another subgrammar, and parse
it to get the next complement. We continue in this manner until there are no
more potential complements, or until we (non-deterministically) decide to quit
collecting complements. Then we resume where we had left off before collecting
w’s complements.
In more detail, we first calculate frameset-first(f), where f is w’s frameset.

Frameset-first(f) is the set of categories that can be the first category in some
frame in f . For example, if w’s frames are [DP<? PP*] and [PP* CP>?],
frameset-first(f) = fDP, PP, CPg. We push a new initial LR state onto the
stack, of the form [Start! †X1, ..., Start! †Xn], where the Xi are the categories
in frameset-first(f). If all frames contain only optional constituents, we also
include an item Start ! †. In our example, the new initial state is

(7)

2
664

Start !†DP
Start !†PP
Start !†CP
Start !†

3
775

After pushing (7) onto the stack, we continue parsing. When we come to
the point of executing an Accept action, the configuration is of form:

control: . . . suspended parse. . . [Start ! †Xi] [Start ! Xi†]
parse: . . . w Xi

At this point, instead of accepting, we attach Xi to w. That is, we pop Xi

and w from the stack, make a copy of w that differs only in having Xi as new
rightmost child, and push the copy of w back on the stack. We pop the top two
states from the control stack, bringing us back to the configuration we were in
before we suspended parsing to collect w’s complements. Then we push a new
initial state onto the stack that is generated as follows.
First, we calculate frameset-next(f , Xi), that is, a new frameset representing

what remains of the frames after the slot of category Xi has been filled. We
consider one frame at a time. If there is no slot for Xi in the frame, the frame is

13

removed. If there is a slot, and it is not iterable, it is removed from the frame;
if it is iterable, it remains in the frame. After the first slot is filled, all initial
slots are removed. If a final slot is filled, the frame becomes empty. In our
example, frameset-next(f , PP) = f[PP*], [PP*, CP>?]g, frameset-next(f , DP)
= f[PP*]g, and frameset-next(f , CP) = f[]g.
After calculating the new frameset f 0, we build a new initial state from

frameset-first(f 0) as before, and push it on the stack. For example, if we have
just attached a DP to w, w’s new frameset is [PP*], and the new initial state is
[Start ! †PP, Start ! †].
When the new frameset contains only empty frames, or if we choose to Close

(that is, reduce by Start ! e), we are finished collecting w’s complements.
Instead of pushing a new initial state on the stack, we resume the parse we had
suspended.
Attachment ambiguities show up as Shift-Close conflicts. Suppose we are

parsing a sentence of form DP VP DP PP, where the PP may be attached
either to the immediately preceding DP, or to the VP. At the point of conflict,
the configuration is:

(8) ctrl: ... [IP ! DP†VP] [Start ! †DP, †] [Start ! †PP, †]
parse: VP DP

The conflict is whether to Close the DP, or to Shift the following PP. In
general, Close is dispreferred, with the effect that low attachments are preferred.
In certain cases, however, a higher attachment is preferred. For example, if
VP’s frameset permits a PP after the DP, Close is the preferred action from
configuration (8), inasmuch as attachment to a verb is preferable to attachment
to a noun. In general, to determine whether there is a more preferable high
attachment, we need only look back through the stack for initial states. If the
node corresponding to an initial state is a legal attachment site, and a more
highly valued attachment site, then Close is preferred to Shift.

4.2 Attachment Ambiguities in the Chunker

I have asserted that the extra machinery for dealing with lexical selection and
attachment ambiguities is only needed by the attacher. However, there are
apparent examples of attachment ambiguity that arise within chunks, and it is
important to explain why they do not require the machinery I have developed
for the attacher.
For example, noun compounds have the property that any binary tree over

the string of nouns is a valid parse, as far as syntactic constraints go. This
is a hallmark of attachment ambiguities (cf. Church and Patil, 1982). Also,
conjunction of prenominal adjectives can lead to similar ambiguities. However,
these cases differ from inter-chunk attachment ambiguities in an important way.
The chunker can simply treat noun sequences and adjective conjunction as iter-
ative structures, e.g. [DP a [NP [N+ cherry picker exhaust manifold]]], and leave

14

it to the semantics to figure out the interrelationships. (The treatment of noun
compounds in grammar (5) above is only slightly more elaborate.) The phrase
[N+ cherry picker exhaust manifold] represents the set of possible binary trees
over the four nouns, but the ambiguity is a semantic ambiguity; the syntactic
representation is unambiguous.
It may appear that the attacher could do the same for e.g. PP attachment.

For example, if we are concerned only about VP’s of the form V NP PP*, we
could assume a flat VP expansion, generating structures like

[VP [place] [the ball] [in the box] [on the table] ...]

Such a structure could be interpreted as representing every possible binary tree
over the bracketted phrases (as suggested by Church and Patil, 1982). But
unfortunately, the ambiguity cannot be localized to a single VP. Consider John
met the woman he married in Italy. To avoid a decision on the attachment of
in Italy, we must assume a structure like

[IP John [VP [met] [NP the woman] [CP he married] [PP in Italy]]]

In order to guarantee a syntactically unambiguous, flat structure, we must as-
sume that embedded VP’s (married, here) expand only to V. If we group [CP
he married] and [PP in Italy] in the semantics, as in the first tree in (9), we
interpret in Italy as a modifer of married. If the grouping in the semantics is as
in the second tree in (9), we interpret in Italy as a modifer of met.

(9)

met[] the woman[] he married[] in Italy[] met[] the woman[] he married[] in Italy[]

However, this approach is unsatisfactory, because virtually all chunks fol-
lowing the matrix verb are left unassembled, and a considerable amount of
syntactic information that constrains the assembly of those chunks is ignored.
That is, unlike with noun compounds, it is not true that every binary tree over
the chunks in (9) is syntactically admissable. In particular, the relative clause
cannot be a modifier of the verb, and the PP cannot be a modifier of the NP. In
effect, by pushing ambiguity out of the syntax and into the semantics, we also
end up requiring the semantics to do much of the work of the syntax. Concisely,
there is an intermingling of syntactic and semantic constraints in interchunk
relations that is not found within chunks.

5 Comparison to Related Models

5.1 The Chunker and Chart Parsing

An issue I have skirted to now is ambiguity in the output of the chunker. There
are at least two sorts of ambiguity that arise that cannot be satisfactorily re-

15

solved by the heuristics we have discussed. First, it is possible for the same
stretch of words to be analyzed as a chunk in more than one category. This
arises especially with single-word chunks. For example, described may repre-
sent either a single-word VP or a single-word PtcP, and the ambiguity can be
resolved only in context. In this case, both readings are passed to the attacher.
A more difficult type of ambiguity arises when it is not clear where to end a

chunk. Consider the following sentences:

In Manhattan apartments with low rent are in great demand

In Manhattan apartments with low rent, rats are a serious problem

Neither is a hopeless garden path like “the horse raced past the barn fell,” so
we would like the parser to be able to handle either. However, it is not possible
to decide whether the first PP chunk ends before or after apartments using only
immediate context. We must pass both possibilities to the attacher, and let it
choose based on right context.
As a consequence, the output of the chunker is actually not a stream, prop-

erly speaking. Reading from the chunker at a given position yields a set of
chunks, along with the positions at which they end. In the attacher, the input
pointer for a configuration after a shift is not necessarily one greater than the
previous input pointer.
This invites comparison to a chart. One of the advantages cited for a chart is

that it does not require that all competing readings in cases of ambiguity cover
the same segment of the input string. In effect, the chunker as revised outputs
chart edges. I think that is a profitable way of viewing the architecture of the
parser I have described. A chart parser introduces a cache point for every partial
parse tree constructed, to avoid duplication of effort. Often, though, the added
overhead involved in caching and checking caches is greater than the savings
from avoiding repeated construction. In the parser I have described, chunks, and
only chunks, are “cached”—in the sense that separate branches of the attacher’s
non-deterministic calculation can use the same chunks, without duplicating the
effort of constructing them. This appears to be a good intermediate position
between caching all trees, whether they are likely to be reused or not, and
caching no trees.

5.2 The Chunker and the Sausage Machine

A brief note is in order comparing the chunker to Frazier and Fodor’s Sausage
Machine (Frazier and Fodor, 1978). Apart from having two levels, there is
actually little similarity between a chunking parser and the Sausage Machine.
Processing in both stages of the Sausage Machine are identical, whereas in a
chunking parser, only the attacher is powerful enough to deal with lexical se-
lection and attachment ambiguities. The ‘chunks’ that the first-stage processor

16

builds, in the Sausage Machine, are determined entirely by what fits in an in-
put buffer of arbitrarily-chosen size. In a chunking parser, by contrast, chunks
have a detailed syntactic definition, which can be defended on syntactic grounds
alone (cf. Abney, to appear). For the same reason, the correspondence between
chunks and `-phrases is lacking in the Sausage Machine model. Again, because
of the heterogeneity of Sausage Machine ‘chunks,’ there is no basis for supposing
that they constitute particularly good cache points in a nondeterministic parse.
(In fact, the Sausage Machine model is deterministic, so the question does not
arise.)
In brief, virtually none of the advantages of a chunking parser, which I

summarize in the next section, accrue to the ‘chunks’ produced by the Sausage
Machine.

6 Conclusion

By way of conclusion, I would like to reiterate the advantages of a chunking
parser. First, one of the most difficult problems for context-free parsing tech-
niques is attachment ambiguities. But within chunks, (syntactic) attachment
ambiguities do not arise, and simple context-free parsing techniques are very
effective. By having separate chunker and attacher, we can limit the use of
expensive techniques for dealing with attachment ambiguities to the parts of
grammar where they are really necessary—i.e., in the attacher.
Another motivation is modularity. Since the chunker is insensitive to the

state of the attacher, we can develop and debug it separately from the attacher.
The chunker also simplifies the task that the attacher faces: many lexical am-
biguities can be resolved within chunks, relieving the attacher of that task, and
there is less clutter to deal with at the level of chunks than at the level of words.
A related motivation is that the chunker-attacher division keeps attachment

ambiguities from being multiplied with chunk ambiguities. The chunker evalu-
ates chunks as well as it can on its own, instead of making decisions relative to
one or another branch of the attacher’s non-deterministic computation.
As we have seen, there is also some psychological evidence for chunks. Gee

and Grosjean argue that the ‘performance structures’ that emerge from a range
of diverse experiments are best predicted by what they call `-phrases. Apart
from their structure—that is, seen simply as strings—chunks and `-phrases are
nearly identical.
A fifth motivation is related to Gee and Grosjean’s work. They show that

`-phrases are a good predictor of intonation. Given the correspondence between
`-phrases and chunks, there is a possibility of using the chunker in determining
intonation, for speech synthesis.
And last, but not least, we can account for a range of otherwise inexplicable

syntactic constraints if we assume the existence of chunks. For example, we can
explain why *the proud of his son man is odd, by observing that it involves a

17

chunk, of his son, embedded in another chunk, the proud man. (See Abney, to
appear.) If the chunks are produced in a stream, it is not possible to interleave
them.

References

1. Abney, Steven (1987) The English Noun Phrase in Its Sentential Aspect,
unpublished doctoral dissertation, MIT, Cambridge, MA.

2. Abney, Steven (to appear) “Syntactic Affixation and Performance Struc-
tures,” in Denis Bouchard and Katherine Leffel, eds., Views on Phrase
Structure, Kluwer.

3. Aho, Alfred V., and Jeffrey D. Ullman (1972) The Theory of Parsing,
Translation, and Compiling, in two volumes, Prentice-Hall, Inc., Engle-
wood Cliffs, NJ.

4. Chomsky, Noam (1986) Barriers, MIT Press, Cambridge, MA.

5. Church, Kenneth, and Ramesh Patil (1982) “Coping with Syntactic Am-
biguity or How to Put the Block in the Box on the Table,” American
Journal of Computation Linguistics, 8.3-4, 139-149.

6. Frazier, L., and J.D. Fodor (1978) “The Sausage Machine: A new two-
stage parsing model,” Cognition 6, 291-325.

7. Gee, James Paul, and François Grosjean (1983) “Performance Structures:
A Psycholinguistic and Linguistic Appraisal,” Cognitive Psychology 15,
411-458.

8. Hindle, Donald (1983) “User manual for Fidditch, a deterministic parser,”
Naval Research Laboratory Technical Memorandum #7590-142.

9. Knuth, D.E. (1965) “On the translation of languages from left to right,”
Information and Control 8.6, 607-639.

10. Williams, George E. (1986) “The Solar Cycle in Precambrian Time,” Sci-
entific American 255.2, 88-97, New York, NY.

18

